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Abstract. In this paper. the q-deformed quantum harmonic oscillators in the supersymmevic 
quantum systems me inuoduced. The q-supercaherent states associated with the q-deformed 
supersymmeuic quantum harmonic oscillmrs are constructed explicitly. and their properties 
are investigated in detail. It is shown that the q-supercoherent states are completeness. The 
uncertainty relations for q-supercoherent states .m discussed as well. 

1. Introduction 

It is well known that the usual coherent states [ 1 4 ]  of Lie (super)algebras have wide 
applications to various branches of physics. Over the past few years, quantum groups 
and their representations [S, 61 have drawn considerable attention from mathematicians and 
physicists. A problem of interest is the consideration of coherent states associated with the 
quantum groups, called q-coherent states. Recently, q-coherent states of the q-harmonic 
oscillators [7-101 have been investigated by several authors, but the q-supercoherent states 
of the q-supemscillators in a supersymmetric quantum system have not been considered. 
Here we will investigate them in detail. 

2. q-deformed superoscillators model 

Let us consider the standard Widen supersymmetrization procedure [ l l ]  in N = 2 
symmetric quantum mechanics. The two Hermitian (odd) supercharges Ql and Q 2 ,  with 
the supersymmetric (even) Hamiltonian H, generate the well known (Lie) algebra sqm(2) 
characterized by the structure relations: 

Q: = Q: = ff {Qi, Qd = 0 [ Q i ,  HI = [Qz, HI = 0. (2.1) 

These algebra elements have the following forms in the one-dimensional spatial context 
[12,13]: 

(2 .W 

(2.26) 

QI  = ( f ) ’”(MpX + NW’(x) )  

Q2 = (4)”z(Npx - MW’(x) )  

6 Mailing address. 

0305-4470/94/175995t10$1950 @ 1994 IOP Publishing Ltd 5995 



5996 Sun-Ru Huo et a1 

where M, N are the Pauli matrix sigma-1 and Sigma-2 respectively, and W ( x )  is the so- 
called superpotential, while w'(~) is the partial derivative of W ( x )  with respect to x and 
p x  is the momentum operator as usual. The supersymmetric Hamiltonians can be described 
by the following: 

H = 4(p: + W n  + TW")  (2.3) 

where T is the Pauli matrix sigma-3. 

superpotential given in [12]: 
Let us restrict ourselves here to harmonic oscillator-like systems by dealing with the 

W ( x )  = fw.2 (2.4) 

where w is the corresponding angular frequency. The supersymmetric Hamiltonian H of 
the quantum harmonic oscillators then becomes 

H = $(p: + w2xZ + wT). (2.5) 

Then, let us observe the relation between the above supersymmetric quantum harmonic 
oscillator systems and the usual ones. We find that there is one term more than the usual 
number. This term comes from the supersymmetry. 

We now define an annihilation operator ( U )  and a creation operator (U+) ,  respectively: 

a = ( ~ w ) - ' / ~ ( o x  + i n )  

U+ = (2w)-'fl(ox - p x ) .  

From equations (2.6), it foUows that 

[a ,  U + ]  = 1 

H = p ( u + , a }  I + 'UT .  2 

If we express H as components, 

( 2 . 6 ~ )  

(2.6b) 

(2.7) 

H+ = $u(u', U )  5 0/2 ( 2 8 )  

the action of operator H on the eigenstate *s,m may be written as 

H*nm = (w/2)(Ia+,u) t [f+, f1)Vn.m m = 0.1 (2.9) 

where f+ and f are the fermionic creation operator and fermionic annihilation operator, 
respectively, while U and U+ are the bosonic annihilation and creation operators defined by 
equations (2.4). respectively. 

Making use of the eigenvalue equation (2.9), one can check easily that the eigenstates 
may be expressed as 

(2.10) 
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The action of operators a(a+) and f (f +) on the eigenstate qn,,, may be written as 

aIIn, m) = & I I ~  - I ,  m) (2.11) 

f1In.m) = J i i i ~ l n , m - l )  f + ~ l n , m ) = ~ ~ ~ l l ~ n , m + l j .  (2.12) 

We now consider the q-deformation of the supersymmehic quantum harmonic oscillators 
(2.9), which are discussed in [14], and are different from the b-deformation defined in [12]. 
The Hamiltonian of the q-deformed superoscillators may be written as 

a+lln, m) = 6 C l 1 1 n  + I ,  m) 

Hq = (w/2)(bq,a,+) + tf:. f,l) (2.13) 

where a, and a; are the q-deformed bosonic operators which satisfy the commutation 
relations [14j 

(2.14u) 

(2.14b) 

(2.14~) 

(2.144 

while f ,  and f,' are the q-deformed fermionic annihilation and creation operators, 
respectively, obeying the relations [15] 

112 + -MI2 
fqf: + 4 f q  f q  = 4 

[M, fd'l= fd' [M, f q l  = -fq. 

(2.15a) 

(2.15b) 

In the above equations, N and M are the bosonic and fermionic number operators, 
respectively. It was shown that for 0 < q < 1 any number of q-fermions can occupy 
a given state, in contrast to the case for ordinary fermions [15]. It was further shown that 
when q = 1, the nilpotency relations f$l = 0, (f:l)z = 0 are realized in the weak 
sense, i.e. f211n)F = 0, ( f+)211n)F = 0, where Iln)F spans the fermion Fock space, thereby 
reducing to the usual fermion operators when q = 1. But for n > 1, 0 < q < 1, the 
equations (f,)" # 0, (f;)" # 0 hold. 

3. q-supercoherent states and their properties 

Let us denote the q-eigenstates of the q-deformed Hamiltonian H, by Iln,m), where n 
and m are the boson and fermion numbers, respectively (note that m may be equal to any 
positive integer). 

For convenience, one can define in equations (2.15) the following transformations: 
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The basic anticommutation relation (2.15) now becomes 

F F t + q F ' F  = 1 

[M, F+] = Ft [M, F] = -F. 

We now define three q-numbers as 

[ n l B  = (qn - q-n)/(q - 4-l) 

[nlF = (1 - (-q)")/[l - (-q)l 

(3.3a) 

(3.36) 

(3.3c) [n]G = [(q-'/*Y - (-q1/2)"~/[q-1/2 - (-q'/')J. 

Iterating equation (3.2u), we arrive at the formula 

F(F+)" - (-q)"(Ft)"F = [ n l ~ ( F + ) " - ' .  (3.34 

In order to let [ n ] ~  be positive and to be able to consmct a super-Fock space based on 
the vacuum IlO), a,llO) = 0, FllO) =0, for these oscillators, one can easily show that q in 
equation ( 3 . 2 ~ )  must be taken to be real and in the range 0 c q c 1. 

Defining the vacuum state 110) by the expression 

110) 11o)B 0 Ilo)F (3.4) 

where 110)~ and 
respectively, which obey 

are the vacuum states of the bosonic and fermionic operators, 

aqllO)B = 0 FIIO)F = 0 (3.5) 

we can construct the normalized n q-bosons and m q-fermions state by 

Iln, m), = ([nl~![ml~!)-,j~(aP+)n(~+)*110) (3.6) 

where 

(3.7u) 

(3.7b) 

From equations (3.34 and (3.6), the action of the q-boson operators up, a: and the q- 
fermion operators F ,  Ft on the basis vectors can be given by 

(3.8a) 

(3.8b) 

( 3 . 8 ~ )  

(3.84 
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From equation (3.3), and making use of an induction method, one can get the orthogonality 
relation [IO] 

y(n3 mlln', m'), = &"&d. (3.9) 

Now we point out again that the q-fermion operators F and F+ are not nilpotency operators. 
However, it can be seen from equations (3.6) and (3.86) that when q + 1, 

( u : Y ( F + ) ~ ~ ~ o )  = ,/-11n, m)4 = o for m > I 

i.e. they are consistent with the usual fermion operators. 

the state [In, m),, of this system can be expressed by 
By making use of equations (2.13), (3.1) and (3.81, the energy level, corresponding to 

En.m = (o/Z)(([nIB + [n + 118) 4 (4"2[m]F - [m f I]F)q-"/'). (3.10) 

In order to construct the q-supercoherent states (q-scss) of the supersymmetric quantum 
harmonic oscillators (SQHOs), we will find it useful to introduce the q-exponential functions 
for the q-bosonic operators and the q-fermionic operators, respectively, which are defined 
by the following expressions: 

(3.11~) 

(3.11b) 

These q-exponential functions are the q-analogues of the classical ones. In equations (3.1 la) 
and (3,11b), z is taken as the complex number and (or q) is taken as the pseudo- 
Grassmann variable. By this we mean that Yq% + YyY, = 0; but Yq and % are not 
nilpotent, (Yq)n # 0, (q)" # 0. 

are taken to anticommute with F 
and F*;  but commute with the fermion number operator M, and when q + 1, Yq -+ Y, 

As for the usual Grassmann variables, 9, and 
- 
Y, -+ \fi, (Y)2 = 0, (@)Z = 0. 

We now construct q-scss. The q-scss of the SQHOs can be defined as follows: 

IIZ, Yy) = N ( i z ,  ~Y,)exPB,(z~:)eXPFG4(-Y,F+)110) (3.12) 

where N ( ? z , q Y , )  is the normalization factor. Since z is a complex variable and Yq a 
pseudo-Grassmann variable, llz, Yy) are called q-scss. 

By means of equations (3.11). the q-scss (3.12) can be rewritten as 

(3.13) 

where ( m / 2 )  stands for the integer part of m/2. In the above equation, we have used 
equation (3.6). 
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The q-scss of the q-SQHOS should be normalized in the form 

(2 ,  *,,llz, Y,,) = 1. (3.14) 

Substituting equation (3.13) into equation (3.14) and making use of equation (3.9), one can 
obtain the following relation: 

(3.15~~) 2 -  - (z,  Yq llz, Y,,) = N (zz ,  *,,Y,,)expB,(iz) expG,,(qY,,) = 1 

where 

(3.15b) 

Then, the normalization factor is given by 
- 

N(zz,%Y,,) = ~ e x p B ~ ~ ~ z ~ ~ ~ ~ G , , ~ ~ , , ~ , , ~ ~ ~ ' / 2 .  (3.16) 

The overlap of two q-scss is written as 

(z', Y;llz, Yq) = N(?z'. ~ ; Y ~ ) N ( ~ , ~ Y , , ) e x ~ , , ( i ' z ) e x p ~ ( ~ ~ Y , , ) .  (3.17) 

This means that the q-SCSs of the q-deformed sQHOs are not orthogonal to each other. They 
are linearly dependent. 

From equation (3.13), using equations (3.8~)  and (3.8~)  and the anticommuting 
properties of Y,,, i t  is easily shown that 

(3.18~) 

(3.1 86) 

that is, the q-scss llz, Y,,) are the eigenstates of U,, and F-operators. 

equation (3.6) is given by 
The resolution of unity in the super-Fock space spanned by the base vectors from 

(3.19) 

As is well known, the core of coherent states is their completeness relation. In the 
present case, it can be shown that the q-SCSs defined by equation (3.12) form a complete 
set. And their completeness relation takes the form 

where 
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Note that the integral over d,r and dG,(ct) is the q-integration while the integral over cp 
and 0 is the usual integration. The weight q-superfunction U ( ~ Z , % * ~ )  in equation (3.20) 
is given by 

u(Zz, Kqq) = [ [~ I~ / (~n)* l I exp~ , ( i z )  expGq(*,*,)l-' [expB,(-iz) ex~~,(%*,)l. (3.22) 

We now prove the completeness relation (3.20). Let us denote the LHS of equation (3.20) 
by L. Substituting equations (3.13), (3.16) and (3.22) into equation (3.20), we can obtain 

- 

(3.23) 

(3.24) 

(3.25) 

From the q-Euler formula for the function r ( x )  [81 

JdeaxnexpB,(-x)d,x = [ ~ I B !  

and rd,r = d,r2/[2IB, it follows that 

For quantum groups, the Gq derivative in the above equation can be defined as 

(3.26) 

(3.27) 

(3.28) 
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Hence, we arrive at the formula 

dGqx X m  eXpG,(-X) = [ m ] ~ ! .  IW 
By means of equation (3.29), it follows that 

(3.29) 

m - 
L = l ln,m)qq(n,mll = 1. (3.30) 

Thus, we have proven that the q-SCSs llz, \vq) defined by equation (3.13) are completeness 
and equation (3.20) holds. 

With the aid of the completeness relation of the q-scss, one can expand an arbitrary 
vector [ I f )  as 

n.m=O 

II f) = d:z d&*q oGz7 ~ ~ 4 ) l l z ,  qq)(z.  W q l l f ) .  (3.31) 

Setting \ I f )  = lid, q;), an arbitrary q-SCS of the q-SQHOS, we then have 

Ilz‘q;) = j ~ d ~ z d $ ~ q ~ ( i ~ i ~ ~ 4 ) l l z .  Y4)(z, qyllz’. W;). (3.32) 

This means that the system of q-supercoherent states is actually overcompleteness since it 
contains subsystems of q-scss which are complete systems. 

4. Uncertainty relations 

It is well known that the Heisenberg uncertainty principle is one of the most fundamental 
in quantum mechanics. We now study the q-superoscillators uncertainty relation for the 
q-scss llz, qq) given by equation (3.12). 

From equation (2.6), one can get the q-deformation formula for the operators a and a+, 

a4 = (Zw)-”*(wQ, + iPq) ( 4 . 1 ~ )  

a: = (2w)-]”(wQY - iPq) (4.lb) 
where Q, and Py are the q-deformations of x and p x ,  respectively. From equations (4.1), 
it follows that 

Q, = (2w)-’/2(a, +a:) ( 4 . 2 )  

p4 = (20)]/~(a, - a:)/2i. (4.2b) 
Now we can discuss the uncertainty relation for the q-scss. From equations (3 .18~)  

and (4.2), it is straightforward to obtain 

(e4) (2 ,  ~ q I I Q q I I z ,  qq) = (Zw)-’”(Z + z) (4 .34 

(12;) = ( 2 ,  %,llQ~llz, %,) = (exp,,(fz))-’[q exp,,(qiz) + exp,,(q-’iz)l 

x [2w(q + 1)I-l + (z’ + 2iz + i 2 ) / 2 0  (4.3b) 

(4 .44 (pY) = (z, q 4 ~ ~ ~ q ~ ~ z ,  qy) = (20)’/~(2 - ? ) p i  

(Pqz) = (z,’vYllP;IIz,\Yq) 

= - a2/(q + ~)[exp~,,(iz)I-’[q exp&z) + exp,,(q-’iz)l + a2(z - i)2 
(4.46) 
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where a = &/2i. From equations (4.3) and (4.4). it is easy to arrive at the formulae 

AQt  = (e:) - (eq)' = [exp,(iz)l-'[q expBq(q2z) + expBq(q-'?z)l/2w(q + 1) (4.52) 

AP; = (Pi) - (P,,)' = [expB,(2z)l-'[qexpBq(qiz) +expBq(q-'iz)lo/2(q + 1). ( 4 3 )  

Thus, we have 

AQ:, AP; = [expBq(iz)i-z[q expBq(qzz) + ~ x P , , ( ~ - ~ z z ) I ~ / ~ ( ~  + IY. (4.6) 

On the other hand, we note that the commutation relation of the operators Qq and Pq defined 
by equations (4.1) is 

[eq, p41 = i[a,,a:l = i([N + 1 l B  - [NIB). (4.7) 

Hence, the q-scss of the q-superoscillators give the commutator [eq, PPI the following 
result 

( [ Q q ,  pql) (2, VqII[Qq, Pqlllz, "y) 

= i(expBq(iz))-'(q exp,,(qiz) + expBq(q-'iz))/(q + 1) 

therefore, the uncertainty relation for the q-scss /Iz, Yq) is given by 

(4.8) 

AQ;, Ap; = IIKQ,. pql)112/4. (4.9) 

This means that the q-deformed canonical coordinates and canonical momenta satisfy 
the minimum uncertainty relations. The result of equation (4.9) shows that the q-scss 
Ijz. Vq) are the minimum uncertainty states [l]. 

5. Concluding remarks 

We have obtained the solution of the quantum harmonic oscillators in the supersymmetric 
quantum systems and introduced their q-deformations. We have also constructed the q- 
scs of the q-superoscillators, discussed their orthogonality and completeness relations, and 
investigated the uncertainty relation for the q-SCss. We have found that the q-sCSs are the 
minimum uncertainty states of the superoscillators for all values of z and 0 < q < 1 [I I]. 

It is possible to generalize this kind of q-scs to other supersymmetric quantum systems, 
e.g. the q-JC model. It is also interesting to discuss the q-SCS path integral representation 
of this model. We will give the results elsewhere. 
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